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Errata   She^t   No.    L 

"Vibrations   of  Thick and  Thin Cylindrical   Shells   Surrounded 
by Water,"  J.   Greenspon,  Nonr  -  2733(00)  Tech.   Rep.   No.   4 

In  the Radially Pulsating  Cylinder   (lart   IV  E)   the expression  for 
the   loaded Q is  incorrect   in   the report;   it   should   oe as   follows: 

Q   =        / -    i*±2l  

Thus for the thin cylinder (Oi.^,^ ä./ 

The efficiency of the transducer is as follows: 
£*    ^Si    &-  A 

^       ft  Cp A-     00 

The  Q and  efficiency  of   the   steel   radiator  with    S-o-OT-     *%p±-a./2.7 
c^;   -a.^-fg'  '%-2o&,-l which  resonated   in water  at -Ji^ - /   is now 

as   follows: 

<?        -     '-    r:   / ^ 

Efficiency =  *?<? *7o 

The Q and efficiency of the plexielass radiator with £—2-,   ■K'fe^O.&S' 

(-0/Cf-0.<:i3i   ^-/O^ ^o "^'-^ which resonated at -^-^ ^ C 2-  is 
now as follows: 

/ 
- /. 6 

3.1+ 

Efficiency =    FÖ 7^ 
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LIST OF   SYMBOLS 

Ur radial displacement  in   a thick shell 

UQ tangential displacement   in  a  thick shell 

Ug longitudinal displacement  in  a  thick  shell 

r radial direction 

0 tangential  direction 

2: longitudinal direction 

?rv number of  axial half waves   in  the vibration  pattern  on 
a  finite cylinder 

JL length of   finite  cylinder 

sy^ number of   circumferential waves   in vibration   pattern  of 
cylinder 

-^5 natural frequency 

rr   r3     r "i: stresses   on   cylindrical   surface   of a   thick 
^ cylinder 

Qff)    Pif^j  P-iCr)        functions   describing  the   distribution   of   the 
radial, tangential and longitudinal displace- 
ments respectively, as a function of the rad- 
ial  coordinate 

'Pf, acoustic   pressure   in  the  surrounding   fluid medium 

60 forcing  frequency of  harmonic   forces   applied   to the   shell 

F^^fr) function   describing  the distribution  of   pressure  in 
the  surrounding medium as   a   function   of  the  radial 
coordinate 

^A^, longitudinal wave   length for   the mth mode   (m=l,2,3...) 

sp. internal  forcing  pressure 

/2~~ Fourier component  of   internal  forcing pressure 

J>o density  of   surrounding   fluid 

Ca sound velocity  in   surrounding   fluid 

o'v*^^«.,) amplitude   of   the  radial displacement   of   the mnth  mode 
evaluated  at   the  outside   surface   of   the  cylinder 

^j inside   radius  of  cylinder 

<^0        outside  radius   of   cylinder 

S^ff^A,)  =  &^rf~.ae) +uX~~rf~a.) the  acoustic 
impedance 

Äv,^     resistive   impedance 
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pC**.v*~    reactive   Impedance / 

(Ur)^*,   radial displacement of  mnth mode  of a thick shell 

(Uo)y~^ tangential displacement  of  the mnth mode of  a  thick  shell 

CUi)^.*. longitudinal displacement  of   the mnth mode of  a  thick  shell 

(2i  ,, ,   Cz constants  of   integration   for  thick shell  solution 

C'. . .    Cc' real  part  of  C1....Cg  respectively 

Ci". .      C^' imaginary  part  of C*.. ..Cg respectively 

/^. ß,0 D £,F deflection constants   for  thick  shell   solution 

Ci, .       G,     Ja, be coupling  constants   between deflection  and 
J    ' " pressure 

-Zv   /Tiv Bessel Functions  of  imaginary  argument 

Tv.    Y* Bessel Functions  of real  argument 

A\. shear modulus   for  cylinder material 

£ modulus  of  elasticity   for cylinder material 

Cj velocity  of  an elastic   dilatational wave 

et velocity  of   an  elastic   rotational wave 

J^ density  ^f  the   cylinder  material 

V Poisson's   ratio  for cylinder 

^ r     irdo/X^ /l^-*™*/^      (for finite  cylinder) 

c/0        outside  diameter of  cylinder 

Y— - ^-^        , —^^ forcing  frequency parameter 
%Tr/x-*~ Z^^J   ^ (resonance  occurs  at «o=^> or i/^fi- 

■^h-  -     (-/Cr        ratio of   phase  velocity of waves   to velocity of 
*" rotational wave 

&,,  .    .    &e6 determinant  constants 

f>
0        amplitude   of  forcing pressure 

y^2? St) distribution  of  forcing  pressure 

/S. nondimensional quantity prooortional to  radial deflection 
at  outside   surface  of  cylinder    (exact  theory) 

P nondimensional  quantity  proportional   to   fluid  pressure  at 
at  outside   surface  of cylinder (exact   theory) 

CO forcinp;  frequency 

-iii- 



fPjv)'**<*- pressure in fluid for mnth mode 
f^ density of fluid inside tube 

d sound velocity of fluid inside tube 
Cf   - {^/''^ 
^Pf.        inside fluid pressure due to vibration of tube 
^>j.   outside static pressure in medium 

*pf>       inside static pressure in tube 

Jit   thickness of tube =( Ci0  - &S.   ) 
CC mean radius of tube r CQe+Q^S^  -^(sL^)a0 

^*v.w 'vQ^ ^V^.^ longitudinal, tangential and radial displace- 
J *. j „.  ments of the midsurface of the tube (thin shell) 

/4w-~ Oj—^ v.-*-vs, amplitudes of the longitudinal, tangential and 
_ radial displacements (thin shell) 

(P mean diameter 

jfr^ff)  radial distribution of internal fluid pressure 

0>,' •   Qn >  bil ■    l*xi   determinant constants (thin shell) 
S damping constant 

«^ = "^Ä.  (thin shell) 

^p-   ^u.rBP ,^L-'^ßJizf     (for   tt±cV.  shell   theory) 

^= ^ [/ %r^) ; -^ -y-Ii/1?7 (for thin sheL1 theory> 
^^ y/    parameters associated with internal fluid impedance 

^» '   parameter associated with external fluid resistance 

%,' parameter associated with external fluid reactance 

•^•/^  ratio of damping to critical damping 

Ar   ßr    Cr-   real part of Amn, Bmn, Cmn respectively 
Ac    /S; C^    imaginary p^rt of Amn, Bmn, Cmn respectively 
G^   tangential stress in thin shell theory 
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Cj£ longitudinal  stress   in  thin  shell   theory 
€Q  €^   strains   in  thin  shell    theory 

üfj */"; s^S" nondimensional deflection parameters 
p      fS nondimensional pressure parameters 
^    5"*. nondimensional stress  parameters 
^w phase  angle 

-iiiii- 



ABSTRACT 

This report treats the f 
Long pressureized cyLind 
taining fluid. Exact el 
ureized shells and an ap 
treat the effects of sta 
ural damping. A study i 
on the dynamic behavior 
tween the results of the 

ree and forced vibrations of infinitely 
rical shells surrounded by water and con- 
as ticity theory is used to treat unpress- 
proximate shell theory is employed to 
tic pressure, internal fluid, and struct- 
s made of the effects of these parameters 
of the shell.  Comparisons are made be- 
exact and approximate theories. 

I. INTRODUCTION 

There have 
infinitely 
the infini 
complete b 
point out 
imate freq 
frequency 
tude and d 
tions will 
tion for a 
of the beh 
based on t 

been a number of 
long thin cylindr 

te shell solution 
ehavior of a finit 
a number of import 
uency-wave length 
due to presence of 
irectivity of the 
eventually have t 
finite shell vibr 

avior can undoubte 
he infinite shell 

previous studies on the vibration of 
ical shells in water. "■' Although 
cannot be expected to describe the 
e shell accurately, it can be used to 
ant characteristics such as the approx- 
spectrum, the reduction of the natural 
the water, and the approximate magni- 

sound field. Approximate numerical solu- 
o be used to obtain an accurate solu- 
ating in water, but an overall picture 
dly be obtained by studying the results 
solution. 

It should be made clear at the onset however, just how the infin- 
ite shell solution is to be used and what characteristics it can 
be expected to describe for a finite shell. 

finite thick shell with freely supported ends vi- 
m,° the displacement pattern for standir 

If we consider a 
brating in a vacuum 
tions can be represented as follows: 

ling vibra- 

JT ■ & 
(2 

Fig. 1. The Cylinder 

Junger, J. Acoust. Soc. Am., 25.» 40-47 (1953). 
Bleich and M. L. Baron, Jour. Appl. Mech., June, 1954. 
Bleich, Proc. of 2nd U. S. Nat. Cong. Appl. Mech. (1954). 
Junger, Jour. Appl. Mech., 74, 439-445, (1952). 

Kolotikhina, Soviet Physics - Acoustics, 4, 4, 344-351 (1958). 
Greenspon, "Vibrations of Thick Shells in a Vacuum," Office 

of Naval Research, Project No. NR 385-412, Contract No. Nonr - 
2733(00), Tech. Rep. No. 1, Feb., 1959. 

1. M.   C. 
2. H.   H. 
3. H.   H. 
4. M.   C. 
5. Z.V. 
6. J.   E. 
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7 8 It has been shown by Arnold and Warburton   that such displacement 
functions represent realistic end conditions and can even be used 
to approximate fixed ends if the longitudinal wave length parameter 
is redefined. 

If it is assumed that the shell is extended to infinity in both 
directions along the axis5 the displacement pattern will be the 
same as above with the wave length of the motion being ^-~ - 2-*v/'"^ 
In other words, the vibration pactern on a finite freely supported 
cylinder of length 1 is represented by two sinusoidal waves travel- 
ing in opposite directions on the infinitely long cylinder. 

Now if the infinitely long cylinder is placed in the water the 
pressure produced in the water due to the vibration of the cylin- 
der is as follows-^- 

=>*0      c^f) 

-f^Cr^ai^-e r^ 
"*. ^ o 

and   for-each  displacement   pattern 

there  is   a  pressure   pattern 
fZl ( r J ■&**.      -— c«4 ■ 6 e 

2rr t 

ff*>^~- F^-fr) Cta^ea^ -^z 
t  UJ' 

[2] 

[3] 

[4] 
Thus   each  elastic   mode   of   given m   and  n  excites   a   single   pressure 
mode   in   the   fluid. 
In  the   finite   shell   there  will   be   no  direct  coupling  such as   this 
because  of   the   presence   of   the   ends   of   the   shell.     We   are   therefore 
making   the   following   assumptions   in   applying   the   infinite   shell 
solution   to   the   finite   shell  with  freely   supported  ends   vibrating 
in water; 

1.   The  pressure  produced  on   the   portion  of   the   infinite   shell 
from  A   to   B   (see   Fig.    2)   by   the   adjacent   portions   ( cO   to A 
and  B   to   i>o    )   is   small 

A B 

X 

Fig.    2   Wave   Pattern   on   trie   Infinite   Cylinder 

2.   The motion   of   the   ends   of   the   actual   finite   shell   do not 
effect   the  pressure   on   the   cylindrical   surface. 

/.   R^   N-!   Arnold  and   G.    S"!   war bur ton, Proc.   Roy.    Soc. s   197,   Series   A. 
238-256   (1949). ' 

8.   R.   N.   Arnold  and   G.    B.   Warburton. i'roc.   of   the   Institution  of 
fiech.   Engrs.,   167.,   62-74   (1953). 
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For modes in which the longitudinal displacement is small compared 
to the radial and tangential displacements, assumption 2 should be 
valid»  Assumption 1 is incorrect for a finite shell but it is be- 
lieved that such characteristics as the frequency - wave length 
spectrum and the relative pressures excited by different modes of 
the shell can be obtained satisfactorily.  The vibrating portions 
of the infinite shell which are far away from A and B will have a 
very small effect on the part between A and B.  However the parts 
near A and B will have an appreciable effect. 

9 
A previous reference  presents the characteristics of the axially 
symmetric modes (n=0)of infinitely long thick cylindrical shells 
vibrating in water.  Very special types of loading have to be 
applied to the cylinder to excite these modes and their natural 
frequencies are usually high.  In spite of these facts, these 
modes have been the most useful ones for transducer applications 
because of the relatively laree sound power radiated for a given 
deflect ion. 

ich 
•L    diiii    Li^i-     di-c:    rMiwwn    a &     i_iic     ucdui    unjvac    ciiiu    JL<J ucti.     uiu tic o     L tr r> p e C t IV 6 "* 

lys and are usually the ones excited by general types of transverse 
loads applied to the surface of the shell.  Modes of this type 
have been known to produce unwanted noise radiation in submarine 
hulls.  It is possible that their low frequency characteristics 
combined with their directivity possibilities could prove useful 
in transducer applications. 

II. THICK SHELL THEORY WITHOUT INTERNAL 

FLUID OR PRESSURE EFFECTS 

The theory of nonaxially symmetric vibrations of thick cylindrical 
shells in an acoustic medium follows the axially symmetric theory' 
rather closely with the excepticn that two more boundary conditions 
must be satisfied on the cylindrical surfaces for the nonaxially 
symmetric (flexural) case and the displacements are now dependent 
on (^ . 

For these nonaxially symmetric vibrations the boundary conditions 
to be satisfied on the cylindrical interface between the fluid and 
shell and on the inside shell surface are given in Eq. [5] (see Fig. 1 
for notation). 

9. J. E. Greenspon, J. Acoust. Soc. Am., 32, 1017-1025 (1960) 



irr- CO^ 0,-i.jtJ   =      fr  ^ Äy ±) 

s        * ' 

rir   C&i 0 £ tJ    - O 

The first boundary condition states that the normal stress on the 
outside cylindrical surface of the shell is equal to the pressure 
in  the   fluid   at   this   surface.      The   second 

shell  surfaces 

be assumed harmonic in time. The remaining foul 
e that there are no shear stresses acting on the 
,   the   fluid   beinp  assumed   non-viscous. 

It  will   further   be   assumed   that   the   internal  pressure   is   such  that 
it  can   be  expanded   into  a  Fourier   Series  as   follows: 

1 Ca<3 c*gn 

' t-        J -i     i^ ^ o  ^Vv. ~i ^fr- 
it  has been shown  that the outside fluid pressure can be expanded 
into a similar Fourier Series for the Infinite cylinder.  By sub- 
stitution of the expressions for the internal pressure and the out- 
side fluid pressure into [5], the following equations are obtained 

fa.) - />^ [7] rr 

ro roc )~ röfa-) = rirfaj = ^zfa^ =o 

where 
O^  =   forcing   frqquency  of   internal   pressure 
Pc   =   density  of   the   fluid   surrounding   the   shell 
rö =   sound  velocity  in   the   surrounding   fluid 

's^^fäe)      =   amplitude   of   the   radial  displacement  of   the 
mnth mode   evaluated  at   the   outside   cylindri- 
cal   surface 

■J-^~-~ 6/***.+ t. PCs'**.-^      the  acoustic   impedance 

A^w=  wave   length  of   the  vibration   in   the   loigitudinal  direc- 
tion 



It has been shovcn previously  that the displacements ^r ^ U* 
can be written in terms of six arbitrary constatnts C,/....''. .O-. 
Therefore the radial deflection Ur  and the fluid pressure ^ at6 

the outside interface between the cylinder and the surrounding 
fluid for the mnth mode can be written as follows: 

^1 vw [8] 

where A •Fl >   °I, Qt    ,     i, are as follows: 

Table L. Deflection Constants 

1 

yT^-,^)    -^T-rC^) ^ T^.,^)--*^^) 1 Z-.fy)'-*-^) 
1 
i Z' "1 /Tv.-, (•}) -v. /T^ {•* ) yj ftz,-, fj) - ■* /r*.fvj) 1 yC-ify)-^ Kv^h J 

t' ST^-.rfj.^T^rs) fX-Jf)~^JUCs) sx<.trf)-*T^cs) 

0' -S K>-Js)'-*^(f] s ^C-Y/J-x K^j-J JK-bJ-^Y-rs) 

r ' r^ff) «X^rJ r^fs) 

\   F1 

»  
K^/J r^rs) 

ür~Ä?t^R.        Gt-P'/^^R       h^-A'&^R^    h+=-P'(9^R 
c^&'X^-K       a^^e'/^^h:       jt>x*-B'tL„K     ^^-^'^_>r do] 
^; 

C'X^^r   ^-F/^^/c h^-CQ*^     h^-r'&.^K 
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The parameters ^^ J are explained completely in a previous re- 
ference  and also briefly in the Appendix.  The quantities ,^mn and 
^ mn are contained in a previous reference^- and for completeness 
are given in the Appendix. 

Going back to the boundary conditions (eq. [7]) and substituting 
the expressions for the stresses and impedance, we obtain six com- 
plex algebraic equations in the six unknown complex constants 
C,....C,-.  Thesa equations are as follows: 

Ä - te, ti ^)J C,  / [al2, -fc^ihjc^ + A3 - ^j i-i^J^ 

tic   C + ^^+tftiQ+q+Q+acrCr+atZrO 

[II] 

where C(  _ ^VtC" , (^ = ^V.'^"^ ^ r ^ V. ^* 

and where &,i &e&   are the coefficients for flexural vibrations 
as contained in a previous reference^ and also in the Appendix of 
this report. 

Let the internal pressure be written as follows: 

^ r^ £ -L) -- P* JW 2} <* ^^ [ 12] 
The  deflection  and  pressure  at   the  outside   interface of   the  cylin- 
der  can   then   be  written 



4^   vr 

cfy^ s^     Is   the   phase   angle [1-3] 

where ^ and   r   are  nondimensional   quantities   which have   the   follow- 
ing values: -^ 

p-- 2yp^:{^~" '- ^■^} ^14] 
The nondimensional   quantities ^ and   P  are   functions   of   the   forc- 
ing   frequency c/J  ,   the   thickness   ratio   of ^ ^i/^0    ,   the   wave   length 
ratio    TX d e> Sx'**. ' ,   the  circumferential  parameter n,   Poisson's 

ratio -P ,   the  wave   velocity  ratio  ^"/^V   and   the  density  ratio    "^f 

The  expressions   [14]   can  be   interpreted  as   being   the  nondimensional 
transfer  function  due   to  the Fourier  component   pressure  P^-*..     For 
a   finite  cylinder  of   length i.,  X^-   2^.        so    KcUs   ~ I^TT^O/^ 

(assuming   for   the  moment   that   the   theory was   correct   for   a  finite 
cylinder).      Thu^  expressions   [13]   and   [14]   give   the  deflection and 
pressure   in   the  mnth  mode   (i.e.    for   a   given  nodal   pattern  m and  n) 
as   a  function   of   the  frequency t^j ,      Thus   for   a  given  cylinder  of 
physical  parameters £•>- zko/O 'vu        O vibrating   in 

fluid  with parameters      c/k        -^/p     »   expressions   [13]   and   [14] 

are   the   deflection   and   pressure   response   factor   in  each mode   as   a 
function  of   frequency.      The   trace  of   /ß    vs to will   be  analogous   to 
a   single  degree  of   freedom   (mass   spring   system)   resonance   curve 
which  starts   out  at   a   static   response   and   peaks   at   the   individual 
frequency   of each mode.      The   response   to  any   load  distribution 
can   then   be written   as 

^  --^27^)— [   ] 

If we wish to uncouple the modes completely we can apply a pressure 
which has the same distribution as the deflection, i. e. 

In this case the deflection and pressure are 

2y* ^- [16] 

-7- 



The same theory also applies to elastic waves traveling along 
tubes which are immersed in water in the same manner as described 
in a previous reference?  For this case we can plot -y-= '-/(Ir~ vs 

/S -    /A-*~.  which gives the dispersion curve for elastic waves 
traveling along the infinite tube. 

III. THIN SHELL THEORY WITH INTERNAL FLUID AND PRESSURE 

The exact theory as piven in section II is quite cumbersome to 
work with and requires long computation times even on the electronic 
computer.  Therefore, for practical purposes an approximate theory 
was developed including the additional effects of internal and ex- 
ternal static pressure, internal fluid, and structural damping in 
addition to the effect of the outside acoustic medium.  The compari- 
sons between results of the approximate theory with those of the 
exact theory demonstrate that the approximate theory can be applied 
for rather thick shells. 

We will use the following nomenclature for the theory: 

r^ 1     r 
n   IK C: ,f. 

■fi  =   internal or external  driving   pressure ^ 
-fs0 =  outside   static   pressure   in  medium 
^ =   inside   static   pressure 
^-   =  outside  fluid  pressure  due   to vibration  of  tube 
pl  =   inside   fluid  pressure  due  to vibration  of   tube 
£■" =  modulus  of   elasticity of   tube  material 
-J   =  Poisson's   ratio  for  tube  material 
Ji   =   thickness   of   tube 
ä   =  mean   radius   of   tube 
ft   =   density of   tube  material 
c0   =  velocity  of   sound   in   outside   medium 

j=    =   density of   surrounding   fluid 
d   =  velocity of   sound   in   tube   fluid 
ft   =  density  of   fluid  inside   tube 
Cr  =  velocity of   rotational  wave   in   tube 

F JL, v^ f^Cr 

Fig. 3 Pressurized Cylinder with Fluid 

■ 8- 



The Flügge   shell equations .vitb the addition of structural damp- 
Inp, inside and outside fluid are as rollovs: 

-a. 

/^J. c^ 
'->*-•■ 

In the above equations >rrc-)^/oi!'  ArdvV^t- , Ac ""^Vot    are the 
structural damping forces per unit area "in the *, y and r* directions 
respectively. 

The displacement components for the infinitely long shell are taken 
as follows: 

v^^ - ß^^ *^*ru-/A^ ^^.cf e''.*J\ [18:1 

where Amn, Bmn^ Cmn are the amplitudes of the displacements in the 
mnth mode.  The fluid pressure in the surrounding fluid can be 
written as follows: 

vhere ^J^-^  is the acoustic impedance of the fluid as described be- 
fore.  In thin shell theory it is assumed that loads are applied 
at the median surface, therefore the acoustic impedance is as follows: 

[19] 

10.   W.   Flügge,   "Statik und  Dynamik  der  Schalen,"   Springer-Verlag, 
1934,   p.    101  and  229. 

-9- 



^a-.) ^   . ^JL "1 O 

Traufe-j^tf^+^T^j^J *- 

where ^^  . gXy'^) ^ Ä "i '^ 

If   ^ ^.   < / 
^^ -   -     5^c^c0'r^aJ*-) 

4~* i^+.aj^jjZr— ^rf-'*-) 1 [20] 

^ 

The fluid pressure on the inside of the shell is the solution of 
the wave equation 

C^>/, -- ^ [21] 

For the infinitely long shell we can write 

/>J^;£^J^K^~.
2

-5£   e.1^ [22] 
If     r ^: > /     :A— ^-^ X^^J 

4/*r[^-rx-r^yJ^ [23] 

The constant Ä-^is determined from the boundary condition at 
the inner surface of the tube 

We take the internal driving pressure to be 

^ ^^J^^tZ^^-^^^-^^^t     [25] 
"^ = C 'sv r l 

Substituting the expressions for the desplacements and the fluid 
pressures into the equations of motion, the following set of equa- 
tions result: 

A^faUiL']* 6^^L#.*J + C^^ 1*1.3'J ~o 
A^ [^.'3 + S^l^'+l^i] +C~^ fail =o        [26] 
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where 

2 / 2       ^ 

*,.-- ^ > X 

4?. r Z ^ - ^vV^ilJ   y ^ _a ^ fe ä ^ V*^ w 

6mn and X.vr. A'cre ^iven bafore.   ^C^i-S as follows: 

if     y ycL>i    K.„(*,*)-i—F-^—r^—:—^ ■:—=r~ 



The  damping  coefficient  -S   is  determined  from   the formula 
^   _  Jsv^&./p    (where FC - l^z^JL,  in   equaticns   of motion) 

where   '*-/-*>   -    ^/r     (ratio of   damping   to  critical  damping) 
r c. 

We  first  compute   the natural   frequency ^>    without  damping,   then 
assume   a  ratio  of c/^     ,   calculate /ZZ   and  then    S 

From   equations   [26]    we can obtain the complex constants 

where   subscripts   r  and  i  denote  the  real  and   imaginary  parts.   The 
expressions   for   the  displacements   and  fluid  pressure can  then  be 
written as   follows 

-M^^ =• fc^T 'eL 
x     -«— ^   ^-^(f £■ ~-       i-C^- TO. CA'   t— 

X 

'W v-^ 

The formulas for the longitudinal and periphery stresses at the 
outer surface of the shell are as follows: 

Substituting the expressions for the displacements we can finally 
write the equations for the stresses as follows 

(a^)^-   ^   K.^ ^--^c^cf z [3o] 

The deflections, pressures and stresses can be written in terms of 
dimensionless quantities as before with the thick shell. 

Assuming that the internal driving pressure is of the form given 
by eq. [25] the formulas are as follows: 
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- rr^2^-^/?      ,    -LITX. ^     ^*L<'^'t-£f~~) -    u 

et. A-^ ,     .    , [3i] 

If ^    -     ^    ^*>>    ^^^ 

For  any   Loading  which  is   harmcnic   in   time  the   total  response  will 
then  be   the  sum of   the  modal  contributions   as   explained  before for 
the   thick  shell. 

In  the   simplified   theory we   can determine   the  deflections   fluid 
pressure   and   stresses   as   a  function   of   frequency  for   the   follow- 
ing   input   parameters: 

1. Wave   length parameter -A 
2. Circumferential   parameter '^~ 
3. Thickness   parameter  5? 
4. Poisson's   ratio -0 
5. Damping  parameter -S" 
6. Static   pressure   parameters  ^, ^ ^ 
7. Wave   velocity  parameters 

8. Density  parameters 

Since the above solution is again equivalent to the solution for 
two harmonic waves propagating along the tube, we will also be able 
to study the effects of the input parameters on the propagation of 
unattenuated elastic waves in the tube wall or unattenuated press- 
ure waves inside the tube. 
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IV.   RESULTS 

A. Correlations   between   thick   and   thin   shell   theory  for   shells   in 
an  acoustic  medium 
Fig.   4 gives  comparisons   between   the   exact   elasticity  theory and 
the   approximate   theory  for  shells  vibrating under water.      It   is 
seen   that   the  approximate   theory   is   excellent   for  shells   with 
a  ratio  of   inside   to outside   radius  of   0.9.      Both  the  natural 
frequency  and radial displacement  are  predicted very   accurately 
by   the approximate   theory.      Hovvever   for  a much   thicker  shell 
with  a  =  0.7   the  approximate  theory is  not   accurate   for  displace- 
ment   prediction.      The   approximate   theory  essentially   imposes   con- 
straints  on   the   shell   since  an  apriori  distribution  through  the 
thickness   is   assumed.      Therefore   the   approximate   theory   predicts 
a  stiffer   shell   with consequent   higher natural  frequency  and 
smaller  displacements.      These   characteristics   are   illustrated   in 
Fig.   4  where   it   is   seen   that   the   resonant   displacements   predicted 
by   the   approximate   theory   can  be   in  error   by   a   factor  of   2   for  the 
thicker   shells.      The  natural   frequency  on   the  other hand   is   pre- 
dicted  within   several   percent   by   the   approximate   theory. 

B. Comparisons   between   natural   frequencies   in   vacuum and   in   water 
Fig.   5   presents   plots  of   frequency  parameter,-^1- as   a   function   of 
longitudinal  wave   length  parameter   ß,   for  various   circumferential 
nodal   patterns.      For   the   thicker   shells   (a  =   0.7)   it   is   seen   tnat 
the  water   effects   the  natural  frequency  very   little.      For  tne 
thinner   shells   (a  =   0.95)   the   water   does  not  effect   the natural 
frequency  for n =   4   as   much as   it   does   for  the  modes   of   lower n. 
The   frequencies   for   the   first   branch  of   the  axially   symmetric 
(n  =   0)   mode   at   long  wave   lengths   are  unaffected  by   the  water, 
since   this   type   of  mode   is   primarily   longitudinal   at   long  wi.ve 
lengths.      In   the   infinitely   lonn   shell   water  pressure  only   comes 
about   by  virtue   of  radial   motion.      The water  does  effect   the 
second   branch  frequencies   of   thin   shells   at   long  wave   lengths 
since   they  are   radial  modes  giving  rise   to  appreciable   added  mass 
of   water.      The  beam  mode   (n  =   1)   and   the   lobar modes   (n ^   2)   have 
a  radial   component   of displacement   at   long  wave   lengths    (smallß) 
and   therefore   the  natural   frequencies   in water   are   considerably 
effected. 

C. Thick   shells   -   higher   branches   and   higher   orders 
In   the   thick  shell   theory,   for   each   value  of  n   and   ß   there  is  an 
Infinite  number  of roots.      The   first   resonance   defines   the  fre- 
quency   of   the   first   branch  at   the   given   n   and   0,   the  second   re- 
sonance  defines   the   frequency  of   the  second   branch,   etc.      In 
wave   propagation   analysis  or  in   general   forced  vibration   analysis 
the   importance  of   these   higher   branches   and  higher  orders   is   of 
significance.      Tables   2,   3   and   4,   and  Fig.   6  give   the  deflection 
amplitude   for   several  of   the modes. 
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For  radiating  modes   (ö^n ">   0)   it   is  seen  that   the  higher  orders 
(n  =  3,5)   correspond  to much   larger   amplitudes  for thinner   shells 
(a  =  0.50,   a =   0.70). The  second   branch  for  a  cylinder with a = .01 
ß  =   0.8,   n   =   1   shown   in   Table   2   corresponds   to much higher ampli- 
tudes  than   the   first  branches   for n =   3 and 5.     Although not 
illustrated  in   the   table,   it   has   been  found that   this   is   also 
true   for  the  next   several   branches   of   the  almost   solid  cylinder. 
On   the other hand   for  the   shells with a =   0.50  and a  =  0.70  the 
amplitude  of   the   first  radiating mode  near  resonance   for n  =   3 
and  5  is   of   the   same  order of magnitude   as   the   first  radiating 
mode   for n  =   1.     The  first   radiating mode   forn=   Iß  =0.8 
corresponds   to   the   second   branch. 

D.   Sound power  generated  and  resulting   stresses 
The   average   sound   power  transmitted  to   the  medium over  one   per- 
iod   can   be   written   as   follows: 

fPo*,er)A,e = Jf/Jj^-f^t/A Jt [33] 
where  T   =   one   period 

p  =   pressure 
v  =  velocity 
A  =   area 

Substituting   the  expressions   for  the   pressure   and  velocity   the 
following   expression   is   obtained   for  the  power   transmitted   by 
the  mnth mode 

Integrating   with  respect   to   time 

CP* 'i)^ „ = i ffo Cc sUT» "^ -LC v. £*=A $4~J Z-Z*CeA <P„ „ of A [35] 

*vhere -' ^ C^Cp^^^-^l- [36] 

SO r/^w^i/^o^^^^V*^*^*M L37] 

The   average     ower  transmitted   to   the medium can   then   be  written 
as   follows   for   the   approximate   shell   theory: 
For   the   axilally  symmetric  modes   (n   =   0) 

and   for   the   nonaxially   symmetric   modes 
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In  either  case   the power   transmitted  can   be  written  as 

where  F   is   a factor   depending   on   the  mode  and the other physical 
parameters   of   the   shell   and  medium.     The   term in   the brackets   is 
independent   of   the  mode   and   thickness   of   the   shell.      In   the   above 
formula 

^AJ"   =  non   dimensional   radial  deflection 

—n-    = non   dimensional   frequency   parameter 
^LK = resistive   impedance 
j^,     = density of  medium 
J^     = density  of   ?hell 

C       =  velocity  of   sound   in  medium o ^ 
i) = Poisson's   ratio  for   shell  material 
/£ = modulus   of   elasticity  of   shell 

fi = internal   forcing pressure 
/{ = surface  area   of   cylinder 

Thus   for  a   given   shell   material,   a  given   surface   area,   and  a 
given  internal   driving   force   the   power  will   be   proportional   to F. * 
The  output   power  cannot   be  used   solely   as   a  measure  of   the   radia- 
ting  characteristics   of   a given  mode   since   large  powers   can   be 
obtained  by   usinp   large  drivinc   forces,   tnerebv   inducing   large 
stresses   in   the   shell.      The  maximum  stress   induced   in   the   shell 
can   be   written   in   terms   of   the   internal  oscillating  pressure  as 
follows: 

C^vT^j,   - OTT,,,, r* 

where  P.    is   the   internal  oscillating pressure  and     cr^,^v    is   a 
nondimensional   quantity  which   is   independent   of   the   driving 
force.      The   following  ratio  therefore   is   a  good measure of   the 
power-stress   capabilities   of   the   shell 

For   a  given   size   radiator  of   surface   area  A made  of  a   given  mater- 
ial  öf   modulus  E  and  Poisson   ratio V ,   the   ratio  R  gives   the  power 
that   can   be   transmitted   into  the   medium  for a   particular  mode 
with  a   given  maximum  stress   induced   in   the   shell.      This   ratio   is 
tabulated  in  Table   5   for   different  modes   of  vibration. 
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The results of Table 5 indicate that the shell must be driven 
with very large forces in the lobar modes (n = 2,4) in order for 
these modes to radiate just a fraction of the power that is rad- 
iated by the axially symmetric modes (n = 0).  The first branch 
axially symmetric mode is primarily longitudinal at long wave 
lengths (small ß) and consequently radiation from the cylindrical 
surface takes place through Poisson coupling.  The second branch 
is primarily radial at long wave lengths and is the most efficient 
radiating mode of a cylindrical shell.  This latter type of motion 
can be achieved in a cylindrical transducer either by keeping the 
ends of the transducer open so that uniform pulsing can take 
place or by making the shell very long compared to its diameter 
so that ß will be small.  Simplified equations for such a radia- 
tor are derived in the next section. 

Although the first branch resonances of f lexural waves for n = 1 
and n = 2 are not associated with any radiation, Table 6 and Fig. 
7c show that the second and third branches give appreciable rad- 
iation. For these higher branches for n = 1, 2 the power stress 
ratios will be of the same order of magnitude as the radial mode 
(n = 0). 

In using large steel radiators, the main difficulty is weight. 
A lone steel radiator that would resonate at low frequencies would 
have to be huee.  To resonate at 200 cps in the radial mode a 
steel radiator would have to be 27 feet in diameter.  Therefore 
materials with lower sound velocities or methods to reduce the 
sound velocity must be sought. 

Equations for a radially pulsing cylinder 

Assuming that the pressure in the outside medium is equalized by 
the static pressure in the internal fluid the equation of motion 
of the purely radial mode of a shell can be written as follows: 
(see Eq. [ 17]) : 

—^ o-f-^^^Z ^d-t      EJL    (I0*'-  &i)^-^OiT* eJT- 
Substituting the expressions for the external and internal fluid 
pressure due to sinusoidal radial pulsations of the cylinder the 
equation of motion becomes 

AAS- -h AA.r 

t   t" 'it! ^=   
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Let tine  w =   Ge1"^      and   solving 

where ^     /2*a- * 5 ^&   f ^ 1, L'* rf * 'fJ 

and  using  the   plane wave   approximation 

—~   *      I     ^* ' 

BooCr,-) 
The  numerator  in   the   equation  for   C  is   the   static   deflection under 
a  static   pressure  P  so   that   G   takes   the   form of  the  standard  reson- 
ance   factor   for   a   single  decree of   freedom   system. 
The  natural  frequency  is   determined   from the  equation 

The  values of-n. which satisfy  the   a^ove   equation  determine   the 
natural   frequencies  of   the   system. 
The  Q of   the   system  can   be written   as   follows: 

CD - L        g    ..    _. '1^2  . flA 

us in0;   t ne   frequency equation 

^ "   ZJT /Tv^ ^ei 

1£ <f =   logarithmic   decrement   for  structural   vibration  of   the   shell 
material,   then ,, -j. 

/ + 

irr + -"- ".  ^r :2; ^»o 
l'~  " ><0.1   then   to  a  very  close a|..proximation 

The  efficiency of   the   radiator   is   as   follows: 

Efficiency = ^ g 5>  

or usin<j   the   approximate   formula   for   the   radiation   impedance, 

11.   Hueter,   T.F.   and  Bolt,   RTH.,"Sonics,"   John  Alley S Sons,    1955, 
p.   53. 
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U s in ^ 
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the   Q 
be side 

present   time  very   little   information   is   available   on   the 
high  strength  light  weight   -lastics. iral  dan^inc  oT  nev 

s   will   therefore be   the   s ibject  of   a  future   study,   however 
rough  estimate  of   the   order of magnitude  of   the  Q  and   the 

ency  of  a   steel   and  plexiglass   radiator  is  made   below. 

the   thin   shell   theory  derived   in   this  report,   it was   found 
t   lon-r  wove   lengths   the  radial n.ode   of  a   steel   radiator   (air 
)   with *y^o = 0.95   had   its   resonance  at_a-s; /.      Using a   logar- 
decrement  of   0-02   andA^. =0. 127, ^ =0.273,  # =   2'o, 

and   efficiency   are   as   follows   (neglecting   any  other   losses 
internal   structural   damping): 

Q = 
/ /. 4- 

Üfficiency ^  100% 

re- For  a   plexiglass   radiator  with-^ =0.35, C<*. =0.93,   #=10   the 
sonance  occurred   at_n.  =0.2   with  a   value  of ^=0.32.      Assuming   100 
tirres   the   dan:[>inp   in   plexiglass   as   in   steel 

/. ts 

£f f ic i3ncy 

^ ,  2.x. <fx"x , G 2 x 'o *. 3 J. 

In   spite   of   the  comparatively   lower  efficiency of   the   plexiglass 
radiator   it   should   be   noted   that   in   order   for   the   steel   radiator   to 
resonate   at   200  cps   it  would  have   to  be  about  27   feet   in  diameter 
while   the   plexiglass   radiator  would  be   about   3   feet   in   diameter. 

Tor   thr ;as   found   tnat 

=  o.o2 

lexiglass   radiator   it  \ 
tyf-    ^ ~   f - h 

For  the   steel   radiator 

However   since   the   modulii   and  mass   ratio  of   steel   and  plas_tic   are 
different   the   ratio  of ^*>/^/»6^,(t<^,■ must   be   taken   instead of    'vfcfL,^'J~ 

r /^vg    n 
L  CG^^Jfile.*   Urs 

o. *} 
A- 

4, 

A r - S lyl r fa- ce 
>/c.M:r£,/t 'j'GJS 

^ she/ 

-     -   -       a^ 
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So that  for   tte   same   area  the  power   stress   ratio  is   almost   the   same 
for   the   two  materials.      The  main  advantage   of   the   steel   is   that  it 
has  much greater   stress   capability  and   therefore much  greater  power 
capability. 
Taking   the   safe   alternating  stress   in  the   plexiglass   to  be   2000   psi 
the   power  output   for   this  working  stress would  be 

Taking   the   safe alternating  stress   in  the  steel   to  be  20,000  psi 

..    r**c   - ft*** l_ 2oxiOe *J 
-      2 2,^00     As 

The   steel   is   thus   capable   oL   delivering   ten   times   the  power   as   the 
plastic,   however   the   size  and   consequent  cost  of   the  steel  radiator 
is  the  actual drawback. 
If   the  plexiglass   radiator were   20  feet   long  and   3   feet   in  diameter 
it  would  have   the  capability  of  delivering   the   following   power: 

R 

S-foo   trJo^^tt. s 

If the working stress were cut by 10 the power would be cut by 100. 
However this would still give about 60 KW.  This indicates that a 
plastic ra iator could conceivably bo used as a high power low 
frequency sound source although much more careful study is needed 
before an actual desien can be made since many important factors 
have been left out in"the foregoing analysis. 

Some effects of internal fluid 

Fig. 7a and 7b feive some typical response curves including tne 
effects of internal pressure and internal fluid.  It is seen that 
the internal pressure and fluid have a larger effect on tue lobar 
mode frequency (n=2) than on the axially symmetric mode (n=0).^ ^ 2 
This peneral effsct of pressure is also shown by Baron and dleich 
in their more extensive calculations of the effects of internal 
pressure.  It is also illustrated in Fig. 7b that the internal press- 
ure tends to stiffen the shell thus decreasing the static deflec- 
tion for a given driving pressure. 
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For   the   internal   fluid   ccnsidered  here   the  natural   frequencies   of 
both   the  n  =   0   and  n  =   2  ir.ods s   were   decreased   indicating   that   for 
these   frequencies   the   internal  fluid   has  a   positive   reactance. 
Other cases  can exist   where   the  fluid has   the opposite  effect. 
In  general   it   can  be  stated  that unless   the   shell   is extremelj 
thin   ( -^A*-   < o.oi    )   the  internal  fluid  or  pressure will   only 
have   a  small   effect   on  the  frequencies.     It  was  pointed  out  to 
the  author   that  Dr.   G.   B.   Warburton   had   found   similar  results   for 
thin  shells which  he   reported orally  at   the  Stresa Conference   sev- 
eral  months   ago. 
Electronic   computer  codes   available   for  calculation 
This   report   contains   only   a   small  number  of   the  results   that  have 
been  computed.      It   has   been   the   purpose   of  the   report   to  present 
the   basic   theory   and   sane  general  trends   giving   the   effect   of   some 
of   the  physical  parameter. 
I3M  709   codes   arp   available   for  coenputing   the   response   carves   for 
thick  shells  vibrating   in  any  fluid.      This   code   is   based  on   tue 
exact  elasticity   theory   presented  here.      For   this   code   tne   computer 
tabulates   the   radial   d ts-placeaient,   the   resistive   and  reactive   im- 
pedance   and   the   external   pressure   for  any given  driving  frequency. 
Codes   are   also   available   for  conputinn   the  response   carves   of   thin 
pressurized   shells   containing   fluid.      For   this   case   the   computer 
prints   out   the   axial,   tangential,   and   radial   displacements;   the   in- 
ternal   and   external   pressure;   the  resistive   and  re   ctivc   i. .^edance; 
and   the   longitudinal   and   tangential  stresses.      For   the   exact   theory 
it   takes   about   four   secends   to  calculate   the   response   at  one   fre- 
quency.     The  approximate   theory  crucluations   t ;ke   about   one-half 
second  for   e.;ch   frequency. 
Usinr*   tha;<:    c   des   together  with  the  general   relations   presented   in 
the   earlier   part   of   this   report   one   can  compute   the   forced   response 
of   thick   and   tain   cylindrical   shells   vibrating   in   an   acoustic  med- 
iu m. 
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APPENDIX   I 

I.   The   values   for   the  constants tf„... 4^   which  are   contained   in   the 
body  of   the report   are  as   follows: 
A.   if */   , 2%_ ^    ^^ < Zrr/A_     then 

and /   K ^ /    <: 27—73        J 

"SZ _ 

^ -^ ^ / ^>K^ -4 ^r/j 4cr r   Xv.(WJ 

2_ 
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B.   If  "-V^c   :L,,/\~.      ';-C,>aT>i>,_ then 

and (-          K'-J)       J 

^ = ^Z K-Y^rJ -^vy/J K.frs) a          *£   ,  .       _ .   . 

«si- r-^t,) T-fh) ** m^.r*) ^     i
L-r
l^lr

1             T'J   _ 
^- r^j TM -1 x.(1) ,s -tt-t^t^-'^-^Ml 

^. - 5y;-'m-0'£ -£)Y^O) *u - ^ ) 
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C.   If  ^/     > irr/^ 

and 

ö'JJ- -«s^-iM-r^ *>) 7i fax) 

Gil ~tr~+l)   Y.ri)-1  VC-Y^J 

4+4 -r^+t)Y^j)~<rK-,/C/; 

^il'-fUfrK-^fJ-* Y&)J 

2. 
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II.   The  exnressions  for   the   resistive   and reactive components   of 
impedance   to   be  used  with  the   exact   elasticity   taeory   are  as 
follows: 

& 
-iAjrf^ 

K^'tfixy^-^jir^u 'K-^hzz ^ ^-HJ 
MSt 

for 'Jrcyct>< f ,     r -ßr% fi^tfJa.) 
JJuoC/r^rfJa.) +2~~ ^r4Ja>)J 

/IJ4. 

d VIVM^, = o 
^u^   JJa.^ß^rAf^J 
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